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A periodic face-centred cuboidal cell model is provided to account for inter-particle
interaction, and a particle-crack tip interaction model is developed to study the interaction
between a blunting model I crack tip and the closest array of initially spherical rubber
particles in an effective medium. Three-dimensional elastoplastic finite element analysis
has been preformed to study the deformation and fracture behaviour of rubber-modified
polycarbonates. The effective elastoplastic constitutive relation is derived by the method of
homogenisation and local stress and strain distributions are obtained to explore the role of
rubber cavitation in the toughening process at different stress triaxiality. 3D elastoplastic
finite element results are compatible with experimental observations, that is, rubber
particles can act as stress concentrators to initiate crazing or shear yielding in the matrix
but they behave differently from voids at high triaxiality. Rubber cavitation plays an
important role in the toughening process under high tensile triaxial stresses. C© 1999
Kluwer Academic Publishers

1. Introduction
Rubber modification has been widely used to enhance
the fracture toughness of many brittle and semi-brittle
polymers. Over the past few years, understanding of
various toughening mechanisms in rubber-modified
polymers has been advanced by extensive experimen-
tal and analytical work [1–4]. Rubber cavitation, ma-
trix crazing and shear yielding have been identified as
three major toughening mechanisms. The significance
of rubber cavitation and the sequence of the associated
toughening mechanisms have been the subject of many
previous studies. The departure of theoretical predic-
tion from experimental observation is mainly caused by
the inaccurate modelling of crack tip constraint and/or
loading conditions.

Yee and coworkers [5, 6] and Wu and Mai [7] re-
ported direct experimental evidence of constraint relief
due to rubber cavitation in the high triaxial tension re-
gion associated with a crack tip for extensive matrix
shear yielding to occur in rubber-modified epoxies and
polycarbonates. It is shown that rubber cavitation oc-
curs first, followed by massive shear yielding of the
matrix material. Sue and Yee [8] studied the tensile be-
haviour of a polycarbonate plate with a circular hole
by 2D finite element analysis and experimental obser-
vation. It is shown that the maximum octahedral shear
stress is shifted around the interface from the equator of
particles towards the±45◦ region as the applied tensile

stress is increased. Huang and Kinloch [9] developed
a 2D plane-strain periodic cell model with one particle
surrounded by four neighbouring particles in a stag-
gered layout to demonstrate successfully the localised
shear banding process butnot the rubber cavitational
process because they used a low rubber bulk modu-
lus and dealt with a simple tension case. Schemeret al.
[10] simulated the deformation and cavitational process
in rubber-toughened polycarbonate by 2D plane-strain
finite element analysis. However, since polycarbonate
specimens tend to undergo brittle fracture under a high
tensile triaxial stress state associated with a macro-
crack, these 2D finite element analyses are difficult
to be extended to the real case of a crack in a thick
rubber-modified PC specimen due to the differences in
constraint/loading conditions.

Guild and Kinloch [11] developed a periodic spheri-
cal cell model to investigate the stress and strain distri-
butions in rubber-modified epoxies under triaxial stress
state using axisymmetric elastic and elastic-plastic fi-
nite element analyses. The spherical model is based on
the assumption that the overall effect of inter-particle
interaction for random distribution is an ‘average’ from
all the neighbouring particles and not directional, which
leads to an underestimation of the inter-particle inter-
action. Moreover, it is not easy to use this method to
model the real crack-tip stress and strain fields be-
cause it is confined to axisymmetric conditions. Sue
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and Yee [12] conducted a micromechanical investiga-
tion on the spherical rubber particle cavitational process
near a crack tip using a combination of Irwin’s crack-
tip analysis, slip-line field theory and Dewey’s closed-
form elastic solution. The stresses in front of a crack-
tip elastic-plastic boundary were used as the farfield
boundary conditions to calculate the local stress con-
centrations around a spherical rubber particle or void
in the case that both particle-particle and particle-crack
tip interactions can be neglected. It is assumed that the
inclusion size is much smaller than the sizes of the crack
and its corresponding plastic zone and also the inclu-
sion is located just outside the crack-tip plastic zone
where Dewey’s solution still applies.

Chen and Mai [13, 14] provided a face-centred
cuboidal (FCC) cell model to study the toughen-
ing mechanisms in rubber-modified epoxies using 3D
elastoplastic FEA because it is easy to simulate both
rubber cavitation and matrix shear banding processes
using such a staggered periodic layout, which includes
the full inter-particle interaction and removes the ax-
isymmetric requirement. Wu, Wu and Mai [15, 16] car-
ried out 2D plane-strain elastoplastic finite element
analysis to study the effects of volume fraction and bulk
modulus of rubber particles on toughening mechanisms
for rubber-modified epoxies with a pre-existing macro-
crack. Hom and McMeeking [17, 18] pointed out in
their study on void growth near a mode I plane-strain
crack tip that the coupling effects may be stronger in
2D problems for cylindrical holes than in 3D problems
for initially spherical voids. But they did not study the
rubber toughening mechanisms.

In this paper, three-dimensional elastoplastic finite
element analysis is carried out to obtain the local stress
and strain fields for rubber-toughened polycarbonates
under various constraint/loading conditions. A 3D peri-
odic face-centred cuboidal (FCC) cell model is adopted
to describe the distribution of rubber particles in the PC
matrix. A 3D particle-crack tip interaction model is pro-
vided to study the interaction between a blunting mode
I crack tip and the closest array of initially spherical
rubber particles located parallel to and directly ahead
of the crack front in the effective medium. Other in-
teractions are taken into account through the effective
stress-strain relation for the effective medium obtained
from the face-centred cuboidal (FCC) cell model.

2. 3D micromechanical modelling
Because a 3D crack problem is both complex and time-
consuming, we have to make some simplifications in
order to carry out 3D elastoplastic finite element analy-
sis. Two different ways will be adopted to examine the
toughening process in rubber-modified polycarbonates
with a face-centred cubic layout, as shown in Fig. 1. The
matrix is assumed to be elastic-plastic governed by the
Von Mises criterion and the particles isotropic elastic.
First, we will study the local stress and strain fields in a
periodic face-centred cuboidal cell subjected to uniax-
ial tension and prescribed stress systems in front of the
crack-tip elastic-plastic boundary. Then we will con-
sider the interaction of a blunting mode I plane-strain
crack tip with the closest periodic array of initially
spherical rubber particles located directly ahead of and

Figure 1 A plane-strain crack in rubber-modified polymers with a face-
centred cubic layout.

Figure 2 Face-centred cuboidal cell model.

parallel to the crack front in the effective medium by a
sub-modelling technique.

2.1. Face-centred cuboidal cell model
The representative unit of the periodic FCC microstruc-
ture is shown in Fig. 2. Under symmetric loading con-
dition, a one-eighth face-centred cuboidal cell can be
chosen due to the periodic symmetry of the problem.

The periodic symmetry requirements are satisfied by
imposing the following constraint equations on the cor-
responding surfaces of the cell

ux = Ux0, ty = tz = 0 atx = a0

uy = Uy0, tx = tz = 0 at y = a0 (1)

uz = Uz0, tx = ty = 0 atz= a0

and

ux = 0, ty = tz = 0 atx = 0

uy = 0, tx = tz = 0 at y = 0 (2)

uz = 0, tx = ty = 0 atz= 0

wherea0 is the cell length, (ux, uy, uz) and (tx, ty, tz) are
the components of displacement vectoru and surface
traction vectort alongx-, y- andz- directions, Ux0, Uy0
and Uz0 are displacement constants. The surfaces of
x=a0, y=a0 andz=a0 are kept parallel with respect
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to their original shapes during deformation to satisfy
the periodic symmetry requirements.

The effective stressσe and strainεe are obtained by
averaging the local stressσ and strainε in the cell, that
is,

σe = 1

VÄ

∫
VÄ

σ dV = 1

VÄ

∫
SÄ

r ⊗ t dS (3)

εe = 1

VÄ

∫
VÄ

εdV = ε0 (4)

wherer is the position vector,ε0 is the constant strain
tensor dependent on the constant normal displacement
on the cell surface,VÄ and SÄ represent the cell vol-
ume and surface, respectively. We use the equilibrium
condition without volume force, i.e.∇ · σ = 0, to ob-
tain the last equality of (3). We can ensure the desired
level of effective true stress system without axisym-
metric requirement by adjusting the uniform normal
displacement increment of each face of the unit cell
[13, 14, 17, 18].

2.2. Particle-crack tip interaction model
The solution of a 3D crack problem is possibly peri-
odic only along the crack front direction but not peri-
odic in the perpendicular plane. We cannot model many
rubber particles with the crack simultaneously due to
the large storage capacity and computation efficiency
required for such a 3D crack problem. For simplifi-
cation of numerical analysis, we consider the interac-
tion of a blunting model I crack tip with the closest
periodic array of initially spherical rubber particles lo-
cated directly ahead of and parallel to the crack front in
the effective medium with other interactions taken into
account through the effective stress-strain relation for
the effective medium obtained in Section 2.1 using a
face-centred cuboidal cell model. Following the meth-
ods by Wuet al. [15, 16] and Hom and McMeeking
[17, 18], the blunting crack tip has an initial notch ra-
dius ofr0 equal to the radius of rubber particles. Rubber
particles are equidistant from the notch center with an
initial distancea0 and evenly spaced from each other
with an initial distance 2a0 in the crack front direc-
tion. We change the initial distancea0 from 5r0 to 2.5r0
while keeping the particle size constant, which gives a
particle volume fraction of 1.68% and 13.40%, respec-
tively (i.e., fr = 2πr 3

0/3a3). Owing to the periodicity
in the crack front direction and the symmetry with the
crack plane of the problem, a domain extending one-
half wavelength of the periodic array above the crack
plane is considered for analysis, as shown in Fig. 3. The
y-axis is perpendicular to the crack plane and thez-axis
is parallel to the crack front.

The normal displacement and shear forces on the
symmetry and periodic symmetry planes should be
zero. These requirements are satisfied by imposing the
following constraint equations:

uy = 0 tx = tz = 0 at y = 0 (symmetry) (5)

uz = 0 tx = ty = 0 atz= 0 and z= a0

(periodic symmetry) (6)

and the crack surface is traction free.

Figure 3 Particle-crack tip interaction model.

The asymptotic displacement field for the mode I
plane-strain crack tip by LEFM is used as the outer
boundary condition under small-scale yielding con-
dition

ux = KI

Ee
2(1+ νe)

×
(

r

2π

)1/2

cos
θ

2

[
1− 2νe+ sin2 θ

2

]
(7)

uy = KI

Ee
2(1+ νe)

×
(

r

2π

)1/2

sin
θ

2

[
2− 2νe− cos2

θ

2

]
wherer andθ are the polar coordinates,KI is the mode
I stress intensity factor,Ee is the effective Young’s
modulus andνe is the effective Poisson’s ratio. The
dimensionless stress intensity factor is defined asK̄I =
KI/σyr

1/2
0 , whereσy is the matrix yield strength andr0

is the initial notch radius.
Equation (5) is the symmetry condition about the

crack plane, (6) is the periodic symmetry condition
along the crack front direction and (7) is the outer
boundary condition prescribed by the asymptotic elas-
tic crack tip displacement solution. Periodicity for the
solution of such a crack problem exists only in thez-
direction and breaks down in thex- and y-directions
due to the existence of a crack although the distribution
of rubber particles is 3D periodic, so we can only apply
the periodic condition in thez-direction to simplify the
numerical analysis.

3. Three-dimensional elastoplastic finite
element analysis

3.1. Effective mechanical properties by
face-centred cuboidal cell model

The PATRAN program is used for automatic mesh gen-
eration. The model has a total of 17079 four-node tetra-
hedron elements and 4969 nodes at a particle volume
fraction of 1.68%, and 8491 four-node tetrahedron el-
ements and 1844 nodes at a particle volume fraction of
13.40%. The matrix has typical mechanical properties
for polycarbonate with Young’s modulus of 2400 MPa,
Poisson’s ratio of 0.42 and yield strength of 75 MPa
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[12]. The corresponding bulk modulus for the matrix is
5000 MPa. Rubber particles have Young’s modulus of
1 MPa and Poisson’s ratio of 0.4999, which are within
the typical range for rubber properties [4, 19]. The cor-
responding rubber bulk modulus is hence 1667 MPa.
Three-dimensional elastoplastic finite element analysis
was carried out by the ABAQUS program on ALPHA
STATION 500 at the CAMT. True stress and logarith-
mic strain were adopted in the calculations. For com-
parison, we use the same mesh to do the calculations for
the void/matrix system with rubber particles replaced
by voids.

Figure 4 Effective Von Mises true stress versus effective logarithmic
strain at different stress triaxiality for a particle volume fraction of 1.68%.
(Solid symbols: rubber-PC. Open symbols: void-PC). —•— uniaxial
tension; ---¥--- uniaxial deformation;N σ e

yy : σ e
zz : σ e

xx= 2.5 : 2.0 : 1.5;
H σ e

yy : σ e
zz : σ e

xx= 2.4 : 1.7 : 1.6;¨ σ e
yy : σ e

zz : σ e
xx= 1 : 0.9 : 0.9.

Figure 5 Effective Von Mises true stress versus effective logarith-
mic strain at different stress triaxiality for a particle volume frac-
tion of 13.40%. (Solid symbols: rubber-PC. Open symbols: void-
PC). —•— uniaxial tension; ---¥--- uniaxial deformation;N σ e

yy : σ e
zz :

σ e
xx= 2.5 : 2.0 : 1.5;H σ e

yy : σ e
zz : σ e

xx= 2.4 : 1.7 : 1.6;¨ σ e
yy : σ e

zz : σ e
xx=

1 : 0.9 : 0.9.

The local stress and strain fields in the cuboidal
cell are calculated for the rubber/matrix and void/
matrix systems under uniaxial tension (σ e

yy : σ e
zz : σ e

xx=
1 : 0 : 0),uniaxial deformation (εe

yy : εe
zz : εe

xx= 1 : 0 : 0)
and two crack-tip stress systems (σ e

yy : σ e
zz : σ e

xx=
2.5 : 2.0 : 1.5 [20], 2.4 : 1.7 : 1.6 [12]) as well as very
high triaxiality (σ e

yy : σ e
zz : σ e

xx = 1 : 0.9 : 0.9), then
the effective constitutive relation is derived by a ho-
mogenisation procedure, as shown in Figs 4 and 5 for
particle volume fractions of 1.68 and 13.40%, respec-
tively. Comparison with the Mori-Tanaka theory for the
effective elastic moduli [21] is given in Fig. 6. The ef-
fective Von Mises stress is defined asσ e

s =
√

3Se : Se/2
whereSe=σe − σ e

mI is the deviatoric part of the ef-
fective stress tensorσe with the effective mean stress
σ e

m=σe : I /3. The effective stress triaxiality is defined
asRe

σ = σ e
m/σ

e
s .

(a)

(b)

Figure 6 Dependence of effective elastic moduli on particle volume
fraction. (Small solid symbol/thick black line: rubber-PC. Large open
symbol/thin grey line: void-PC): (a) normalised effective bulk modulus
and (b) normalised effective shear modulus.

2142



We can see that rubber particles behave almost the
same as voids under uniaxial tension but quite dif-
ferently at high triaxiality. The effective stress-strain
curves are lowered with increasing particle volume
fraction and triaxiality. Slight strain-hardening appears
for both rubber/PC and void/PC systems at low stress
triaxiality. On the other hand, notable strain-hardening
for rubber/PC system but strain-softening for void/PC
system appears at high stress triaxiality. Effective elas-
tic moduli decrease with increasing particle volume
fraction but do not change with effective stress triaxial-
ity. They are quite close to the predictions by the Mori-
Tanaka theory compared with the Voigt upper bound.
Because rubber has high bulk modulus and low shear
modulus, the rubber/PC system has a much higher ef-
fective bulk modulus than the void/PC system; but they
have almost the same effective shear modulus within
the rubber/void concentration range we have examined.
The yield point is estimated to be at the sharp reduction
of the slope of the effective stress-strain curve. Effective
shear yield stress is affected greatly by particle volume
fraction and hydrostatic stress. At low triaxiality the ef-
fective yield stresses for rubber/PC system and void/PC
system are almost the same while at high triaxiality ef-
fective yield stress drops more rapidly for the latter than
for the former. The difference becomes larger with in-
creasing particle volume fraction. At high triaxiality the
rubber/PC system needs a much higher stress for the de-
velopment of plastic deformation than the void/PC sys-
tem. The lower yield strength and stronger inter-particle
interaction at a higher particle volume fraction leads to
an enhancement in shear yielding but a reduction in
the load carrying capacity. As a result, there may be an
optimum particle volume fraction to improve fracture
toughness.

3.2. Local stress and strain fields by
particle-crack tip interaction model

The effective stress-strain curve obtained for rubber-
modified polycarbonates under the crack-tip stress sys-
tem of σ e

yy : σ e
zz : σ e

xx= 2.5 : 2.0 : 1.5 [20] is used here
for the effective medium∗. The PATRAN program is
used to generate the mesh automatically. The interac-
tion between the crack tip and rubber particles is mod-
elled by mesh B, which is surrounded by mesh A with
an outer radius 10 times the outer radius of mesh B,
as shown in Fig. 7. These two concentric meshes of A
and B for the global model and sub-model adopted in
the sub-modelling technique ensure the satisfaction of
the conditions of small-scale yielding as well as local
disturbance due to the existence of the periodic array of
rubber particles so that a detailed solution in the local
region can be obtained.

We change the concentration of rubber particles by
varying the inter-particle distance while keeping the

∗ The stress system ofσ e
yy : σ e

zz : σ e
xx = 2.5 : 2.0 : 1.5 is located at the

elastic-plastic boundary of the crack tip in the crack direction for which
the effective stress-strain curve has been obtained. In theory the stress
system along the elastic-plastic boundary will change. But in our cal-
culation we have not considered this variation. For rubber/PC withfr
up to 13.4%, this error is minimal for the non-voided case. But the error
can be large for the voided case.

(a)

(b)

Figure 7 FEA meshes for the global model and sub-model: (a) global
model and (b) sub-model.

particle size constant. The global model totally has 4746
six-node triangular prism elements and 3786 nodes.
The sub-model totally has 16773 four-node tetrahedron
elements and 3745 nodes at a particle volume fraction of
1.68%, and 19435 four-node tetrahedron elements and
4242 nodes at a particle volume fraction of 13.40%.
We use the same mesh to do the calculations for the
void/crack tip system with the periodic array of rubber
particles replaced by the periodic array of voids.

Three-dimensional elastoplastic finite element anal-
ysis was carried out up to a dimensionless stress inten-
sity factor K̄ I = 10 with the ABAQUS program. True
stress and logarithmic strain were used in the calcula-
tions. The global model is analysed first by applying
the displacement condition incrementally on the outer
boundary of mesh A to impose an asymptotic depen-
dence on the mode I plane-strain elastic crack tip solu-
tion, and then the sub-model is analysed based on inter-
polation of the displacement solution from the global
model onto the nodes at the outer boundary of mesh B
with the same increment. The typical running time is
0.5 h for the global model and 2 h for the sub-model.

The contour plots of Von Mises stress in the cen-
tral domain around the crack tip based on the de-
formed shape at different stress intensity factors for rub-
ber/crack tip and void/crack tip systems at a particle vol-
ume fraction of 1.68% are shown in Figs 8 and 9, respec-
tively, where the stresses are in MPa. As the crack-tip
plastic zone is far away from the rubber particle/void,
it will not be influenced by the existence of rubber par-
ticle/void although the shear stress distribution near the
rubber particle/void undergoes some disturbance initi-
ated by the rubber particle/void. As the crack-tip
plastic zone is approaching the rubber particle/void,
stress overlapping appears in the ligament between the
crack tip and the rubber particle/void due to their in-
teraction and the crack-tip plastic zone protrudes
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(a)

(b)

Figure 8 Contour plot of Von Mises stress in the central domain around the crack tip based on the deformed shape for rubber particle/crack tip system
at a particle volume fraction of 1.68%: (a)̄KI = 3.0, (b) K̄I = 3.8, (c) K̄I = 4.0. (Continued).

2144



(c)

Figure 8 (Continued).

towards the rubber particle/void. Shear yielding occurs
first in the matrix ahead of the crack tip, then in the
matrix surrounding the rubber particle/void and finally
the crack-tip plastic zone is connected with the plastic
region surrounding the rubber particle atK̄I = 4.0 and
the void atK̄I = 3.6, respectively. Voids cause shear
yielding earlier than rubber particles, which indicates
that rubber cavitation is beneficial to the development
of extensive shear deformation in the matrix.

The maximum octahedral shear stress, hydrostatic
tension and principal stress for PC/rubber and PC/void
systems under various constraint/loading conditions by
the face-centred cuboidal cell model and particle-crack
tip interaction model are shown in Table I in compar-
ison with the results obtained by Sue and Yee [12].
We change the particle Poisson’s ratio from 0.49 to
0.4999. The inter-particle distancea0 is equal to five
times the particle radiusr0, corresponding to a particle
volume fraction of 1.68%. From the elastic analysis by
Dewey’s elastic solution [12] we know that the matrix
around the rubber particle/void has actually undergone
plastic deformation for the crack-tip stress system of
2.4σy : 1.7σy : 1.6σy because the maximum octahedral
shear stress surpasses 0.47σy. This result is also con-
firmed by the 3-D elastoplastic finite element analysis
using the particle-crack tip interaction model. Hence
the results from the Dewey’s elastic solution [12] and
the face-centred cuboidal cell model usingelasticfi-
nite element analysis cannot give an accurate descrip-
tion of the actual stresses in the matrix and rubber

particles ahead of a crack tip. On the other hand, the
particle-crack tip interaction model can give the de-
tailed stress distributions and the sequence of develop-
ment the plastic zones very clearly. From Figs 8 and
9 we can see that the matrix surrounding the rubber
particle/void undergoes plastic deformation before the
crack-tip plastic zone arrives and then these two plastic
regions are joined together.

To compare with the results obtained by Sue and Yee
[12], we take the maximum octahedral shear stress, hy-
drostatic tension and principal stress normalised by the
matrix yield strength for the particle-crack tip inter-
action model atK̄I = 2.4 when the matrix around the
void is close to shear yielding but still deforms elas-
tically. At this stage the principle stresses in the ma-
trix around the rubber particle/void are lower than the
principle stresses at the elastic-plastic boundary (2.4σy :
1.7σy : 1.6σy). Since the maximum stresses in the ma-
trix around the rubber particle/void at the elastic stage
increase nearly proportionally, we can compare the ra-
tios of these maximum stresses for neat PC, PC/rubber
and PC/void systems to assess the possibility of matrix
crazing or shearing yielding as well as to understand
the role of rubber cavitation in the toughening process.

From Table I we can see that maximum octahedral
shear stress, hydrostatic tension and principal stress
all decrease with increasing particle Poisson’s ratio.
There exists little difference in the stress concentra-
tions around voids and around rubber particles with
Poisson’s ratio of 0.49 for all the cases studied. Stress
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(a)

(b)

Figure 9 Contour plot of Von Mises stress in the central domain around the crack tip based on the deformed shape for void/crack tip system at a
particle volume fraction of 1.68%: (a)̄KI = 3.0, (b) K̄I = 3.4, (c) K̄I = 3.6. (Continued).
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(c)

Figure 9 (Continued).

TABLE I Maximum octahedral shear stress (τoct), hydrostatic tension (pmax) and principal stress (σmax) under various constraint /loading conditions

τoct pmax σmax

S & Y This work S & Y This work S & Y This work

Cell model (σ e
yy : σ e

zz : σ e
xx= 1 : 0 : 0)

Neat PC 0.47 0.47 0.33 0.33 1.00 1.00
PC/rubber (0.4999) — 0.79 — 0.85 — 1.93
PC/rubber (0.499) 0.79 0.87 0.82 0.91 1.92 2.12
PC/rubber (0.49) — 0.89 — 0.93 — 2.18
PC/void 0.93 0.93 0.82 0.93 2.11 2.18

Cell model (σ e
yy : σ e

zz : σ e
xx= 2.4 : 1.7 : 1.6)

Neat PC 0.35 0.35 1.88 1.88 2.37 2.37
PC/rubber (0.4999) — 0.80 — 2.32 — 3.11
PC/rubber (0.499) 0.70 1.47 2.28 2.53 2.98 4.06
PC/rubber (0.49) — 1.64 — 2.62 — 4.25
PC/void 1.69 1.69 2.28 2.63 4.05 4.26

Particle-crack tip interaction model (̄KI = 2.4)

Neat PC — 0.087 — 0.64 — 0.76
PC/rubber (0.4999) — 0.19 — 0.72 — 0.95
PC/rubber (0.499) — 0.36 — 0.79 — 1.12
PC/rubber (0.49) — 0.38 — 0.80 — 1.15
PC/void — 0.40 — 0.80 — 1.16

concentrations drop quickly as particle Poisson’s ra-
tio exceeds 0.499, especially at high stress triaxiality.
Good prediction of stress difference near the crack tip
due to rubber cavitation can be given by the face-centred

cuboidal cell model under the crack-tip stress system
(2.4σy : 1.7σy : 1.6σy) rather than under uniaxial tension
(σy : 0 : 0) in comparison with the particle-crack tip in-
teraction model. For example, the ratio of maximum
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octahedral shear stress around voids to that in neat PC
is only 1.98 under uniaxial tension in contrast to 4.83
under the crack-tip stress system, which is similar to the
prediction of 4.52 by the particle-crack tip interaction
model. Maximum shear stress is predicted to increase
more quickly than maximum hydrostatic tension and
principal stress due to rubber cavitation near a crack tip
by both the face-centred cuboidal cell model under a
given crack-tip stress system and the particle-crack tip
interaction model. The increasing ratios for maximum
octahedral shear stress, principal stress and hydrostatic
tension due to rubber cavitation at a rubber Poisson’s
ratio of 0.4999 are, respectively, 110, 23 and 11% by
the particle-crack tip interaction model, and 111, 37 and
13% by the face-centred cuboidal cell model under the
crack-tip stress system (σ e

yy : σ e
zz : σ e

xx= 2.4 : 1.7 : 1.6).
Hence rubber cavitation benefits matrix shear yielding
more than matrix crazing. Our face-centred cuboidal
cell model and Sue and Yee’s model predict a similar
general trend on the stress concentrations, however, it
seems that their results for PC/rubber system with parti-
cle Poisson’s ratio of 0.499 may be closer to our results
for PC/rubber system with particle Poisson’s ratio of
0.4999 instead of 0.499.

The dependence of hydrostatic tension at the centre
of rubber particles and plastic strain in the mid-ligament
between the crack tip and rubber particles on dimen-
sionless stress intensity factor̄K I at particle volume
fractions of 1.68 and 13.40% is shown in Fig. 10. The
path plots of plastic strain as a function of the distance
from the crack tip for rubber/crack tip and void/crack
tip systems at different̄K I are shown in Figs 11 and
12 for particle volume fractions of 1.68 and 13.40%,
respectively. The path is a straight line starting from
the crack tip and passing the particle centre, which is
the intersection of two symmetric planes ofy = 0 and
z= a0.

We can see that both hydrostatic tension inside rub-
ber particles and plastic strain in the ligament between
the crack tip and rubber particles increase with decreas-
ing inter-particle distance so that rubber cavitation and

Figure 10 Dependence of hydrostatic tension at the centre of rubber
particles and plastic strain in the mid-ligament on stress intensity factor
at particle volume fractions of 1.68 and 13.40%.

Figure 11 Plastic strain versus relative distance from the crack tip at dif-
ferent stress intensity factor for rubber particle/crack tip and void/crack
tip systems at a particle volume fraction of 1.68%.

Figure 12 Plastic strain versus relative distance from the crack tip at dif-
ferent stress intensity factor for rubber particle/crack tip and void/crack
tip systems at a particle volume fraction of 13.40%.

ligament shear yielding at a higher particle volume frac-
tion can occur at a lower stress intensity factor. There
exists a peak for the hydrostatic tension at the centre
of rubber particles as the dimensionless stress intensity
factor is around 3.6 and 8.0 for particle volume fractions
of 13.40 and 1.68%, respectively. This trend was also
obtained for the simple tension case by Schemeret al.
[10] with their two-dimensional plane-strain finite ele-
ment model. Rubber cavitation must occur before the
hydrostatic tension reaches the maximum value.

If cavitation strength for rubber particles is within
the range of 8 to 20 MPa, rubber particles can easily
cavitate before shear yielding occurs in the surrounding
matrix, which is consistent with the experimental ob-
servation by Parkeret al. [6]. For example, hydrostatic
tension at the centre of rubber particles reaches 9.14,
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18.48 and 28.37 MPa at̄K I = 0.8, 1.6 and 2.4 for a
particle volume fraction of 1.68% in comparison with
8.28, 16.64 and 21.05 MPa at̄KI = 0.4, 0.8 and 1.0 for
a particle volume fraction of 13.40%.

Plastic deformation grows more quickly with in-
creasing K̄ I in void/crack tip system than in rub-
ber/crack tip system. Plastic strain around rubber par-
ticles at a particle volume fraction of 1.68% is 0.23%
and 41.34% at̄K I = 4 andK̄ I = 10 in comparison with
6.75% and 105.7% around voids. Therefore, undam-
aged rubber particles in the triaxial tension area have
strong constraint effects on plastic deformation of sur-
rounding matrix due to their high bulk modulus.

4. Conclusions
Our three-dimensional elastoplastic finite element
modelling of deformation and fracture behaviour of
rubber-modified PC is compatible with experimental
observations by Yee and coworkers [5, 6] and Wu and
Mai [7]. That is, rubber particles can act as stress con-
centrators to initiate crazing or shear yielding in the
matrix but they behave quite differently from voids at
high triaxiality due to their high bulk modulus which
enables them to maintain the triaxial constraint. Rub-
ber particles sustain hydrostatic tension high enough to
cavitate prior to matrix shear yielding so that extensive
plastic deformation can be developed in the matrix. Ef-
fective elastic moduli decrease with increasing rubber
volume fraction. The dependency is closer to the pre-
diction by the Mori-Tanaka theory than by the Voigt’s
upper bound. Effective yield behaviour depends greatly
on the hydrostatic stress and particle volume fraction.
Both hydrostatic tension inside rubber particles and
plastic strain in the ligament between the crack tip and
rubber particles increase with decreasing inter-particle
distance. The higher the particle volume fraction, the
lower the stress intensity factor required for rubber cav-
itation and ligament shear yielding. There may be an
optimum particle volume fraction for the enhancement
of fracture toughness because of the increased propen-
sity to shear yielding but a reduction in the load carrying
capacity at a higher particle volume fraction. Maximum
shear stress, hydrostatic tension and principal stress all
increase with decreasing particle bulk modulus. Sub-
sequent to rubber cavitation maximum shear stress in-
creases much more quickly than maximum hydrostatic
tension and principal stress. Rubber cavitation, there-
fore, favours matrix shear yielding more than matrix
crazing. The big stress difference between rubber/crack
tip and void/crack tip systems can be predicted well
by the face-centred cuboidal cell model under a given

crack-tip stress system rather than under uniaxial ten-
sion when compared with the particle-crack tip interac-
tion model. The particle-crack tip interaction model is
essential to provide a clear picture of the stress distri-
bution around the crack tip and rubber particles/voids
and the sequence of matters.
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